.TH "SRC/dlae2.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/dlae2.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBdlae2\fP (a, b, c, rt1, rt2)" .br .RI "\fBDLAE2\fP computes the eigenvalues of a 2-by-2 symmetric matrix\&. " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine dlae2 (double precision a, double precision b, double precision c, double precision rt1, double precision rt2)" .PP \fBDLAE2\fP computes the eigenvalues of a 2-by-2 symmetric matrix\&. .PP \fBPurpose:\fP .RS 4 .PP .nf DLAE2 computes the eigenvalues of a 2-by-2 symmetric matrix [ A B ] [ B C ]\&. On return, RT1 is the eigenvalue of larger absolute value, and RT2 is the eigenvalue of smaller absolute value\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIA\fP .PP .nf A is DOUBLE PRECISION The (1,1) element of the 2-by-2 matrix\&. .fi .PP .br \fIB\fP .PP .nf B is DOUBLE PRECISION The (1,2) and (2,1) elements of the 2-by-2 matrix\&. .fi .PP .br \fIC\fP .PP .nf C is DOUBLE PRECISION The (2,2) element of the 2-by-2 matrix\&. .fi .PP .br \fIRT1\fP .PP .nf RT1 is DOUBLE PRECISION The eigenvalue of larger absolute value\&. .fi .PP .br \fIRT2\fP .PP .nf RT2 is DOUBLE PRECISION The eigenvalue of smaller absolute value\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf RT1 is accurate to a few ulps barring over/underflow\&. RT2 may be inaccurate if there is massive cancellation in the determinant A*C-B*B; higher precision or correctly rounded or correctly truncated arithmetic would be needed to compute RT2 accurately in all cases\&. Overflow is possible only if RT1 is within a factor of 5 of overflow\&. Underflow is harmless if the input data is 0 or exceeds underflow_threshold / macheps\&. .fi .PP .RE .PP .PP Definition at line \fB101\fP of file \fBdlae2\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.