.TH "SRC/dla_gbrpvgrw.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/dla_gbrpvgrw.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "double precision function \fBdla_gbrpvgrw\fP (n, kl, ku, ncols, ab, ldab, afb, ldafb)" .br .RI "\fBDLA_GBRPVGRW\fP computes the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix\&. " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "double precision function dla_gbrpvgrw (integer n, integer kl, integer ku, integer ncols, double precision, dimension( ldab, * ) ab, integer ldab, double precision, dimension( ldafb, * ) afb, integer ldafb)" .PP \fBDLA_GBRPVGRW\fP computes the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix\&. .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> DLA_GBRPVGRW computes the reciprocal pivot growth factor !> norm(A)/norm(U)\&. The norm is used\&. If this is !> much less than 1, the stability of the LU factorization of the !> (equilibrated) matrix A could be poor\&. This also means that the !> solution X, estimated condition numbers, and error bounds could be !> unreliable\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIN\fP .PP .nf !> N is INTEGER !> The number of linear equations, i\&.e\&., the order of the !> matrix A\&. N >= 0\&. !> .fi .PP .br \fIKL\fP .PP .nf !> KL is INTEGER !> The number of subdiagonals within the band of A\&. KL >= 0\&. !> .fi .PP .br \fIKU\fP .PP .nf !> KU is INTEGER !> The number of superdiagonals within the band of A\&. KU >= 0\&. !> .fi .PP .br \fINCOLS\fP .PP .nf !> NCOLS is INTEGER !> The number of columns of the matrix A\&. NCOLS >= 0\&. !> .fi .PP .br \fIAB\fP .PP .nf !> AB is DOUBLE PRECISION array, dimension (LDAB,N) !> On entry, the matrix A in band storage, in rows 1 to KL+KU+1\&. !> The j-th column of A is stored in the j-th column of the !> array AB as follows: !> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) !> .fi .PP .br \fILDAB\fP .PP .nf !> LDAB is INTEGER !> The leading dimension of the array AB\&. LDAB >= KL+KU+1\&. !> .fi .PP .br \fIAFB\fP .PP .nf !> AFB is DOUBLE PRECISION array, dimension (LDAFB,N) !> Details of the LU factorization of the band matrix A, as !> computed by DGBTRF\&. U is stored as an upper triangular !> band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, !> and the multipliers used during the factorization are stored !> in rows KL+KU+2 to 2*KL+KU+1\&. !> .fi .PP .br \fILDAFB\fP .PP .nf !> LDAFB is INTEGER !> The leading dimension of the array AFB\&. LDAFB >= 2*KL+KU+1\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB115\fP of file \fBdla_gbrpvgrw\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.