.TH "SRC/dhsein.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/dhsein.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBdhsein\fP (side, eigsrc, initv, select, n, h, ldh, wr, wi, vl, ldvl, vr, ldvr, mm, m, work, ifaill, ifailr, info)" .br .RI "\fBDHSEIN\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine dhsein (character side, character eigsrc, character initv, logical, dimension( * ) select, integer n, double precision, dimension( ldh, * ) h, integer ldh, double precision, dimension( * ) wr, double precision, dimension( * ) wi, double precision, dimension( ldvl, * ) vl, integer ldvl, double precision, dimension( ldvr, * ) vr, integer ldvr, integer mm, integer m, double precision, dimension( * ) work, integer, dimension( * ) ifaill, integer, dimension( * ) ifailr, integer info)" .PP \fBDHSEIN\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> DHSEIN uses inverse iteration to find specified right and/or left !> eigenvectors of a real upper Hessenberg matrix H\&. !> !> The right eigenvector x and the left eigenvector y of the matrix H !> corresponding to an eigenvalue w are defined by: !> !> H * x = w * x, y**h * H = w * y**h !> !> where y**h denotes the conjugate transpose of the vector y\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fISIDE\fP .PP .nf !> SIDE is CHARACTER*1 !> = 'R': compute right eigenvectors only; !> = 'L': compute left eigenvectors only; !> = 'B': compute both right and left eigenvectors\&. !> .fi .PP .br \fIEIGSRC\fP .PP .nf !> EIGSRC is CHARACTER*1 !> Specifies the source of eigenvalues supplied in (WR,WI): !> = 'Q': the eigenvalues were found using DHSEQR; thus, if !> H has zero subdiagonal elements, and so is !> block-triangular, then the j-th eigenvalue can be !> assumed to be an eigenvalue of the block containing !> the j-th row/column\&. This property allows DHSEIN to !> perform inverse iteration on just one diagonal block\&. !> = 'N': no assumptions are made on the correspondence !> between eigenvalues and diagonal blocks\&. In this !> case, DHSEIN must always perform inverse iteration !> using the whole matrix H\&. !> .fi .PP .br \fIINITV\fP .PP .nf !> INITV is CHARACTER*1 !> = 'N': no initial vectors are supplied; !> = 'U': user-supplied initial vectors are stored in the arrays !> VL and/or VR\&. !> .fi .PP .br \fISELECT\fP .PP .nf !> SELECT is LOGICAL array, dimension (N) !> Specifies the eigenvectors to be computed\&. To select the !> real eigenvector corresponding to a real eigenvalue WR(j), !> SELECT(j) must be set to \&.TRUE\&.\&. To select the complex !> eigenvector corresponding to a complex eigenvalue !> (WR(j),WI(j)), with complex conjugate (WR(j+1),WI(j+1)), !> either SELECT(j) or SELECT(j+1) or both must be set to !> \&.TRUE\&.; then on exit SELECT(j) is \&.TRUE\&. and SELECT(j+1) is !> \&.FALSE\&.\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix H\&. N >= 0\&. !> .fi .PP .br \fIH\fP .PP .nf !> H is DOUBLE PRECISION array, dimension (LDH,N) !> The upper Hessenberg matrix H\&. !> If a NaN is detected in H, the routine will return with INFO=-6\&. !> .fi .PP .br \fILDH\fP .PP .nf !> LDH is INTEGER !> The leading dimension of the array H\&. LDH >= max(1,N)\&. !> .fi .PP .br \fIWR\fP .PP .nf !> WR is DOUBLE PRECISION array, dimension (N) !> .fi .PP .br \fIWI\fP .PP .nf !> WI is DOUBLE PRECISION array, dimension (N) !> !> On entry, the real and imaginary parts of the eigenvalues of !> H; a complex conjugate pair of eigenvalues must be stored in !> consecutive elements of WR and WI\&. !> On exit, WR may have been altered since close eigenvalues !> are perturbed slightly in searching for independent !> eigenvectors\&. !> .fi .PP .br \fIVL\fP .PP .nf !> VL is DOUBLE PRECISION array, dimension (LDVL,MM) !> On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must !> contain starting vectors for the inverse iteration for the !> left eigenvectors; the starting vector for each eigenvector !> must be in the same column(s) in which the eigenvector will !> be stored\&. !> On exit, if SIDE = 'L' or 'B', the left eigenvectors !> specified by SELECT will be stored consecutively in the !> columns of VL, in the same order as their eigenvalues\&. A !> complex eigenvector corresponding to a complex eigenvalue is !> stored in two consecutive columns, the first holding the real !> part and the second the imaginary part\&. !> If SIDE = 'R', VL is not referenced\&. !> .fi .PP .br \fILDVL\fP .PP .nf !> LDVL is INTEGER !> The leading dimension of the array VL\&. !> LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise\&. !> .fi .PP .br \fIVR\fP .PP .nf !> VR is DOUBLE PRECISION array, dimension (LDVR,MM) !> On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must !> contain starting vectors for the inverse iteration for the !> right eigenvectors; the starting vector for each eigenvector !> must be in the same column(s) in which the eigenvector will !> be stored\&. !> On exit, if SIDE = 'R' or 'B', the right eigenvectors !> specified by SELECT will be stored consecutively in the !> columns of VR, in the same order as their eigenvalues\&. A !> complex eigenvector corresponding to a complex eigenvalue is !> stored in two consecutive columns, the first holding the real !> part and the second the imaginary part\&. !> If SIDE = 'L', VR is not referenced\&. !> .fi .PP .br \fILDVR\fP .PP .nf !> LDVR is INTEGER !> The leading dimension of the array VR\&. !> LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise\&. !> .fi .PP .br \fIMM\fP .PP .nf !> MM is INTEGER !> The number of columns in the arrays VL and/or VR\&. MM >= M\&. !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The number of columns in the arrays VL and/or VR required to !> store the eigenvectors; each selected real eigenvector !> occupies one column and each selected complex eigenvector !> occupies two columns\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is DOUBLE PRECISION array, dimension ((N+2)*N) !> .fi .PP .br \fIIFAILL\fP .PP .nf !> IFAILL is INTEGER array, dimension (MM) !> If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left !> eigenvector in the i-th column of VL (corresponding to the !> eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the !> eigenvector converged satisfactorily\&. If the i-th and (i+1)th !> columns of VL hold a complex eigenvector, then IFAILL(i) and !> IFAILL(i+1) are set to the same value\&. !> If SIDE = 'R', IFAILL is not referenced\&. !> .fi .PP .br \fIIFAILR\fP .PP .nf !> IFAILR is INTEGER array, dimension (MM) !> If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right !> eigenvector in the i-th column of VR (corresponding to the !> eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the !> eigenvector converged satisfactorily\&. If the i-th and (i+1)th !> columns of VR hold a complex eigenvector, then IFAILR(i) and !> IFAILR(i+1) are set to the same value\&. !> If SIDE = 'L', IFAILR is not referenced\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, i is the number of eigenvectors which !> failed to converge; see IFAILL and IFAILR for further !> details\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> Each eigenvector is normalized so that the element of largest !> magnitude has magnitude 1; here the magnitude of a complex number !> (x,y) is taken to be |x|+|y|\&. !> .fi .PP .RE .PP .PP Definition at line \fB260\fP of file \fBdhsein\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.