SRC/dgesdd.f(3) Library Functions Manual SRC/dgesdd.f(3) NAME SRC/dgesdd.f SYNOPSIS Functions/Subroutines subroutine dgesdd (jobz, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, iwork, info) DGESDD Function/Subroutine Documentation subroutine dgesdd (character jobz, integer m, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) s, double precision, dimension( ldu, * ) u, integer ldu, double precision, dimension( ldvt, * ) vt, integer ldvt, double precision, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer info) DGESDD Purpose: DGESDD computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and right singular vectors. If singular vectors are desired, it uses a divide-and-conquer algorithm. The SVD is written A = U * SIGMA * transpose(V) where SIGMA is an M-by-N matrix which is zero except for its min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA are the singular values of A; they are real and non-negative, and are returned in descending order. The first min(m,n) columns of U and V are the left and right singular vectors of A. Note that the routine returns VT = V**T, not V. Parameters JOBZ JOBZ is CHARACTER*1 Specifies options for computing all or part of the matrix U: = 'A': all M columns of U and all N rows of V**T are returned in the arrays U and VT; = 'S': the first min(M,N) columns of U and the first min(M,N) rows of V**T are returned in the arrays U and VT; = 'O': If M >= N, the first N columns of U are overwritten on the array A and all rows of V**T are returned in the array VT; otherwise, all columns of U are returned in the array U and the first M rows of V**T are overwritten in the array A; = 'N': no columns of U or rows of V**T are computed. M M is INTEGER The number of rows of the input matrix A. M >= 0. N N is INTEGER The number of columns of the input matrix A. N >= 0. A A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, if JOBZ = 'O', A is overwritten with the first N columns of U (the left singular vectors, stored columnwise) if M >= N; A is overwritten with the first M rows of V**T (the right singular vectors, stored rowwise) otherwise. if JOBZ .ne. 'O', the contents of A are destroyed. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). S S is DOUBLE PRECISION array, dimension (min(M,N)) The singular values of A, sorted so that S(i) >= S(i+1). U U is DOUBLE PRECISION array, dimension (LDU,UCOL) UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N; UCOL = min(M,N) if JOBZ = 'S'. If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M orthogonal matrix U; if JOBZ = 'S', U contains the first min(M,N) columns of U (the left singular vectors, stored columnwise); if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced. LDU LDU is INTEGER The leading dimension of the array U. LDU >= 1; if JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M. VT VT is DOUBLE PRECISION array, dimension (LDVT,N) If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the N-by-N orthogonal matrix V**T; if JOBZ = 'S', VT contains the first min(M,N) rows of V**T (the right singular vectors, stored rowwise); if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced. LDVT LDVT is INTEGER The leading dimension of the array VT. LDVT >= 1; if JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N; if JOBZ = 'S', LDVT >= min(M,N). WORK WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK; LWORK LWORK is INTEGER The dimension of the array WORK. LWORK >= 1. If LWORK = -1, a workspace query is assumed. The optimal size for the WORK array is calculated and stored in WORK(1), and no other work except argument checking is performed. Let mx = max(M,N) and mn = min(M,N). If JOBZ = 'N', LWORK >= 3*mn + max( mx, 7*mn ). If JOBZ = 'O', LWORK >= 3*mn + max( mx, 5*mn*mn + 4*mn ). If JOBZ = 'S', LWORK >= 4*mn*mn + 7*mn. If JOBZ = 'A', LWORK >= 4*mn*mn + 6*mn + mx. These are not tight minimums in all cases; see comments inside code. For good performance, LWORK should generally be larger; a query is recommended. IWORK IWORK is INTEGER array, dimension (8*min(M,N)) INFO INFO is INTEGER < 0: if INFO = -i, the i-th argument had an illegal value. = -4: if A had a NAN entry. > 0: DBDSDC did not converge, updating process failed. = 0: successful exit. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Contributors: Ming Gu and Huan Ren, Computer Science Division, University of California at Berkeley, USA Definition at line 211 of file dgesdd.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 SRC/dgesdd.f(3)