SRC/dgeqr2p.f(3) Library Functions Manual SRC/dgeqr2p.f(3) NAME SRC/dgeqr2p.f SYNOPSIS Functions/Subroutines subroutine dgeqr2p (m, n, a, lda, tau, work, info) DGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm. Function/Subroutine Documentation subroutine dgeqr2p (integer m, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau, double precision, dimension( * ) work, integer info) DGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm. Purpose: !> !> DGEQR2P computes a QR factorization of a real m-by-n matrix A: !> !> A = Q * ( R ), !> ( 0 ) !> !> where: !> !> Q is a m-by-m orthogonal matrix; !> R is an upper-triangular n-by-n matrix with nonnegative diagonal !> entries; !> 0 is a (m-n)-by-n zero matrix, if m > n. !> !> Parameters M !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> N !> N is INTEGER !> The number of columns of the matrix A. N >= 0. !> A !> A is DOUBLE PRECISION array, dimension (LDA,N) !> On entry, the m by n matrix A. !> On exit, the elements on and above the diagonal of the array !> contain the min(m,n) by n upper trapezoidal matrix R (R is !> upper triangular if m >= n). The diagonal entries of R are !> nonnegative; the elements below the diagonal, !> with the array TAU, represent the orthogonal matrix Q as a !> product of elementary reflectors (see Further Details). !> LDA !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> TAU !> TAU is DOUBLE PRECISION array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors (see Further !> Details). !> WORK !> WORK is DOUBLE PRECISION array, dimension (N) !> INFO !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Further Details: !> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(1) H(2) . . . H(k), where k = min(m,n). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**T !> !> where tau is a real scalar, and v is a real vector with !> v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), !> and tau in TAU(i). !> !> See Lapack Working Note 203 for details !> Definition at line 133 of file dgeqr2p.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 SRC/dgeqr2p.f(3)