.TH "TESTING/EIG/dchkbd.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME TESTING/EIG/dchkbd.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBdchkbd\fP (nsizes, mval, nval, ntypes, dotype, nrhs, iseed, thresh, a, lda, bd, be, s1, s2, x, ldx, y, z, q, ldq, pt, ldpt, u, vt, work, lwork, iwork, nout, info)" .br .RI "\fBDCHKBD\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine dchkbd (integer nsizes, integer, dimension( * ) mval, integer, dimension( * ) nval, integer ntypes, logical, dimension( * ) dotype, integer nrhs, integer, dimension( 4 ) iseed, double precision thresh, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) bd, double precision, dimension( * ) be, double precision, dimension( * ) s1, double precision, dimension( * ) s2, double precision, dimension( ldx, * ) x, integer ldx, double precision, dimension( ldx, * ) y, double precision, dimension( ldx, * ) z, double precision, dimension( ldq, * ) q, integer ldq, double precision, dimension( ldpt, * ) pt, integer ldpt, double precision, dimension( ldpt, * ) u, double precision, dimension( ldpt, * ) vt, double precision, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer nout, integer info)" .PP \fBDCHKBD\fP .PP \fBPurpose:\fP .RS 4 .PP .nf DCHKBD checks the singular value decomposition (SVD) routines\&. DGEBRD reduces a real general m by n matrix A to upper or lower bidiagonal form B by an orthogonal transformation: Q' * A * P = B (or A = Q * B * P')\&. The matrix B is upper bidiagonal if m >= n and lower bidiagonal if m < n\&. DORGBR generates the orthogonal matrices Q and P' from DGEBRD\&. Note that Q and P are not necessarily square\&. DBDSQR computes the singular value decomposition of the bidiagonal matrix B as B = U S V'\&. It is called three times to compute 1) B = U S1 V', where S1 is the diagonal matrix of singular values and the columns of the matrices U and V are the left and right singular vectors, respectively, of B\&. 2) Same as 1), but the singular values are stored in S2 and the singular vectors are not computed\&. 3) A = (UQ) S (P'V'), the SVD of the original matrix A\&. In addition, DBDSQR has an option to apply the left orthogonal matrix U to a matrix X, useful in least squares applications\&. DBDSDC computes the singular value decomposition of the bidiagonal matrix B as B = U S V' using divide-and-conquer\&. It is called twice to compute 1) B = U S1 V', where S1 is the diagonal matrix of singular values and the columns of the matrices U and V are the left and right singular vectors, respectively, of B\&. 2) Same as 1), but the singular values are stored in S2 and the singular vectors are not computed\&. DBDSVDX computes the singular value decomposition of the bidiagonal matrix B as B = U S V' using bisection and inverse iteration\&. It is called six times to compute 1) B = U S1 V', RANGE='A', where S1 is the diagonal matrix of singular values and the columns of the matrices U and V are the left and right singular vectors, respectively, of B\&. 2) Same as 1), but the singular values are stored in S2 and the singular vectors are not computed\&. 3) B = U S1 V', RANGE='I', with where S1 is the diagonal matrix of singular values and the columns of the matrices U and V are the left and right singular vectors, respectively, of B 4) Same as 3), but the singular values are stored in S2 and the singular vectors are not computed\&. 5) B = U S1 V', RANGE='V', with where S1 is the diagonal matrix of singular values and the columns of the matrices U and V are the left and right singular vectors, respectively, of B 6) Same as 5), but the singular values are stored in S2 and the singular vectors are not computed\&. For each pair of matrix dimensions (M,N) and each selected matrix type, an M by N matrix A and an M by NRHS matrix X are generated\&. The problem dimensions are as follows A: M x N Q: M x min(M,N) (but M x M if NRHS > 0) P: min(M,N) x N B: min(M,N) x min(M,N) U, V: min(M,N) x min(M,N) S1, S2 diagonal, order min(M,N) X: M x NRHS For each generated matrix, 14 tests are performed: Test DGEBRD and DORGBR (1) | A - Q B PT | / ( |A| max(M,N) ulp ), PT = P' (2) | I - Q' Q | / ( M ulp ) (3) | I - PT PT' | / ( N ulp ) Test DBDSQR on bidiagonal matrix B (4) | B - U S1 VT | / ( |B| min(M,N) ulp ), VT = V' (5) | Y - U Z | / ( |Y| max(min(M,N),k) ulp ), where Y = Q' X and Z = U' Y\&. (6) | I - U' U | / ( min(M,N) ulp ) (7) | I - VT VT' | / ( min(M,N) ulp ) (8) S1 contains min(M,N) nonnegative values in decreasing order\&. (Return 0 if true, 1/ULP if false\&.) (9) | S1 - S2 | / ( |S1| ulp ), where S2 is computed without computing U and V\&. (10) 0 if the true singular values of B are within THRESH of those in S1\&. 2*THRESH if they are not\&. (Tested using DSVDCH) Test DBDSQR on matrix A (11) | A - (QU) S (VT PT) | / ( |A| max(M,N) ulp ) (12) | X - (QU) Z | / ( |X| max(M,k) ulp ) (13) | I - (QU)'(QU) | / ( M ulp ) (14) | I - (VT PT) (PT'VT') | / ( N ulp ) Test DBDSDC on bidiagonal matrix B (15) | B - U S1 VT | / ( |B| min(M,N) ulp ), VT = V' (16) | I - U' U | / ( min(M,N) ulp ) (17) | I - VT VT' | / ( min(M,N) ulp ) (18) S1 contains min(M,N) nonnegative values in decreasing order\&. (Return 0 if true, 1/ULP if false\&.) (19) | S1 - S2 | / ( |S1| ulp ), where S2 is computed without computing U and V\&. Test DBDSVDX on bidiagonal matrix B (20) | B - U S1 VT | / ( |B| min(M,N) ulp ), VT = V' (21) | I - U' U | / ( min(M,N) ulp ) (22) | I - VT VT' | / ( min(M,N) ulp ) (23) S1 contains min(M,N) nonnegative values in decreasing order\&. (Return 0 if true, 1/ULP if false\&.) (24) | S1 - S2 | / ( |S1| ulp ), where S2 is computed without computing U and V\&. (25) | S1 - U' B VT' | / ( |S| n ulp ) DBDSVDX('V', 'I') (26) | I - U' U | / ( min(M,N) ulp ) (27) | I - VT VT' | / ( min(M,N) ulp ) (28) S1 contains min(M,N) nonnegative values in decreasing order\&. (Return 0 if true, 1/ULP if false\&.) (29) | S1 - S2 | / ( |S1| ulp ), where S2 is computed without computing U and V\&. (30) | S1 - U' B VT' | / ( |S1| n ulp ) DBDSVDX('V', 'V') (31) | I - U' U | / ( min(M,N) ulp ) (32) | I - VT VT' | / ( min(M,N) ulp ) (33) S1 contains min(M,N) nonnegative values in decreasing order\&. (Return 0 if true, 1/ULP if false\&.) (34) | S1 - S2 | / ( |S1| ulp ), where S2 is computed without computing U and V\&. The possible matrix types are (1) The zero matrix\&. (2) The identity matrix\&. (3) A diagonal matrix with evenly spaced entries 1, \&.\&.\&., ULP and random signs\&. (ULP = (first number larger than 1) - 1 ) (4) A diagonal matrix with geometrically spaced entries 1, \&.\&.\&., ULP and random signs\&. (5) A diagonal matrix with 'clustered' entries 1, ULP, \&.\&.\&., ULP and random signs\&. (6) Same as (3), but multiplied by SQRT( overflow threshold ) (7) Same as (3), but multiplied by SQRT( underflow threshold ) (8) A matrix of the form U D V, where U and V are orthogonal and D has evenly spaced entries 1, \&.\&.\&., ULP with random signs on the diagonal\&. (9) A matrix of the form U D V, where U and V are orthogonal and D has geometrically spaced entries 1, \&.\&.\&., ULP with random signs on the diagonal\&. (10) A matrix of the form U D V, where U and V are orthogonal and D has 'clustered' entries 1, ULP,\&.\&.\&., ULP with random signs on the diagonal\&. (11) Same as (8), but multiplied by SQRT( overflow threshold ) (12) Same as (8), but multiplied by SQRT( underflow threshold ) (13) Rectangular matrix with random entries chosen from (-1,1)\&. (14) Same as (13), but multiplied by SQRT( overflow threshold ) (15) Same as (13), but multiplied by SQRT( underflow threshold ) Special case: (16) A bidiagonal matrix with random entries chosen from a logarithmic distribution on [ulp^2,ulp^(-2)] (I\&.e\&., each entry is e^x, where x is chosen uniformly on [ 2 log(ulp), -2 log(ulp) ] \&.) For *this* type: (a) DGEBRD is not called to reduce it to bidiagonal form\&. (b) the bidiagonal is min(M,N) x min(M,N); if M= THRESH\&. To have every test ratio printed, use THRESH = 0\&. Note that the expected value of the test ratios is O(1), so THRESH should be a reasonably small multiple of 1, e\&.g\&., 10 or 100\&. .fi .PP .br \fIA\fP .PP .nf A is DOUBLE PRECISION array, dimension (LDA,NMAX) where NMAX is the maximum value of N in NVAL\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,MMAX), where MMAX is the maximum value of M in MVAL\&. .fi .PP .br \fIBD\fP .PP .nf BD is DOUBLE PRECISION array, dimension (max(min(MVAL(j),NVAL(j)))) .fi .PP .br \fIBE\fP .PP .nf BE is DOUBLE PRECISION array, dimension (max(min(MVAL(j),NVAL(j)))) .fi .PP .br \fIS1\fP .PP .nf S1 is DOUBLE PRECISION array, dimension (max(min(MVAL(j),NVAL(j)))) .fi .PP .br \fIS2\fP .PP .nf S2 is DOUBLE PRECISION array, dimension (max(min(MVAL(j),NVAL(j)))) .fi .PP .br \fIX\fP .PP .nf X is DOUBLE PRECISION array, dimension (LDX,NRHS) .fi .PP .br \fILDX\fP .PP .nf LDX is INTEGER The leading dimension of the arrays X, Y, and Z\&. LDX >= max(1,MMAX) .fi .PP .br \fIY\fP .PP .nf Y is DOUBLE PRECISION array, dimension (LDX,NRHS) .fi .PP .br \fIZ\fP .PP .nf Z is DOUBLE PRECISION array, dimension (LDX,NRHS) .fi .PP .br \fIQ\fP .PP .nf Q is DOUBLE PRECISION array, dimension (LDQ,MMAX) .fi .PP .br \fILDQ\fP .PP .nf LDQ is INTEGER The leading dimension of the array Q\&. LDQ >= max(1,MMAX)\&. .fi .PP .br \fIPT\fP .PP .nf PT is DOUBLE PRECISION array, dimension (LDPT,NMAX) .fi .PP .br \fILDPT\fP .PP .nf LDPT is INTEGER The leading dimension of the arrays PT, U, and V\&. LDPT >= max(1, max(min(MVAL(j),NVAL(j))))\&. .fi .PP .br \fIU\fP .PP .nf U is DOUBLE PRECISION array, dimension (LDPT,max(min(MVAL(j),NVAL(j)))) .fi .PP .br \fIVT\fP .PP .nf VT is DOUBLE PRECISION array, dimension (LDPT,max(min(MVAL(j),NVAL(j)))) .fi .PP .br \fIWORK\fP .PP .nf WORK is DOUBLE PRECISION array, dimension (LWORK) .fi .PP .br \fILWORK\fP .PP .nf LWORK is INTEGER The number of entries in WORK\&. This must be at least 3(M+N) and M(M + max(M,N,k) + 1) + N*min(M,N) for all pairs (M,N)=(MM(j),NN(j)) .fi .PP .br \fIIWORK\fP .PP .nf IWORK is INTEGER array, dimension at least 8*min(M,N) .fi .PP .br \fINOUT\fP .PP .nf NOUT is INTEGER The FORTRAN unit number for printing out error messages (e\&.g\&., if a routine returns IINFO not equal to 0\&.) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER If 0, then everything ran OK\&. -1: NSIZES < 0 -2: Some MM(j) < 0 -3: Some NN(j) < 0 -4: NTYPES < 0 -6: NRHS < 0 -8: THRESH < 0 -11: LDA < 1 or LDA < MMAX, where MMAX is max( MM(j) )\&. -17: LDB < 1 or LDB < MMAX\&. -21: LDQ < 1 or LDQ < MMAX\&. -23: LDPT< 1 or LDPT< MNMAX\&. -27: LWORK too small\&. If DLATMR, SLATMS, DGEBRD, DORGBR, or DBDSQR, returns an error code, the absolute value of it is returned\&. ----------------------------------------------------------------------- Some Local Variables and Parameters: ---- ----- --------- --- ---------- ZERO, ONE Real 0 and 1\&. MAXTYP The number of types defined\&. NTEST The number of tests performed, or which can be performed so far, for the current matrix\&. MMAX Largest value in NN\&. NMAX Largest value in NN\&. MNMIN min(MM(j), NN(j)) (the dimension of the bidiagonal matrix\&.) MNMAX The maximum value of MNMIN for j=1,\&.\&.\&.,NSIZES\&. NFAIL The number of tests which have exceeded THRESH COND, IMODE Values to be passed to the matrix generators\&. ANORM Norm of A; passed to matrix generators\&. OVFL, UNFL Overflow and underflow thresholds\&. RTOVFL, RTUNFL Square roots of the previous 2 values\&. ULP, ULPINV Finest relative precision and its inverse\&. The following four arrays decode JTYPE: KTYPE(j) The general type (1-10) for type 'j'\&. KMODE(j) The MODE value to be passed to the matrix generator for type 'j'\&. KMAGN(j) The order of magnitude ( O(1), O(overflow^(1/2) ), O(underflow^(1/2) ) .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB489\fP of file \fBdchkbd\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.