SRC/cungtsqr.f(3) Library Functions Manual SRC/cungtsqr.f(3) NAME SRC/cungtsqr.f SYNOPSIS Functions/Subroutines subroutine cungtsqr (m, n, mb, nb, a, lda, t, ldt, work, lwork, info) CUNGTSQR Function/Subroutine Documentation subroutine cungtsqr (integer m, integer n, integer mb, integer nb, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldt, * ) t, integer ldt, complex, dimension( * ) work, integer lwork, integer info) CUNGTSQR Purpose: !> !> CUNGTSQR generates an M-by-N complex matrix Q_out with orthonormal !> columns, which are the first N columns of a product of comlpex unitary !> matrices of order M which are returned by CLATSQR !> !> Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ). !> !> See the documentation for CLATSQR. !> Parameters M !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> N !> N is INTEGER !> The number of columns of the matrix A. M >= N >= 0. !> MB !> MB is INTEGER !> The row block size used by CLATSQR to return !> arrays A and T. MB > N. !> (Note that if MB > M, then M is used instead of MB !> as the row block size). !> NB !> NB is INTEGER !> The column block size used by CLATSQR to return !> arrays A and T. NB >= 1. !> (Note that if NB > N, then N is used instead of NB !> as the column block size). !> A !> A is COMPLEX array, dimension (LDA,N) !> !> On entry: !> !> The elements on and above the diagonal are not accessed. !> The elements below the diagonal represent the unit !> lower-trapezoidal blocked matrix V computed by CLATSQR !> that defines the input matrices Q_in(k) (ones on the !> diagonal are not stored) (same format as the output A !> below the diagonal in CLATSQR). !> !> On exit: !> !> The array A contains an M-by-N orthonormal matrix Q_out, !> i.e the columns of A are orthogonal unit vectors. !> LDA !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> T !> T is COMPLEX array, !> dimension (LDT, N * NIRB) !> where NIRB = Number_of_input_row_blocks !> = MAX( 1, CEIL((M-N)/(MB-N)) ) !> Let NICB = Number_of_input_col_blocks !> = CEIL(N/NB) !> !> The upper-triangular block reflectors used to define the !> input matrices Q_in(k), k=(1:NIRB*NICB). The block !> reflectors are stored in compact form in NIRB block !> reflector sequences. Each of NIRB block reflector sequences !> is stored in a larger NB-by-N column block of T and consists !> of NICB smaller NB-by-NB upper-triangular column blocks. !> (same format as the output T in CLATSQR). !> LDT !> LDT is INTEGER !> The leading dimension of the array T. !> LDT >= max(1,min(NB1,N)). !> WORK !> (workspace) COMPLEX array, dimension (MAX(2,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> LWORK !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= (M+NB)*N. !> If LWORK = -1, then a workspace query is assumed. !> The routine only calculates the optimal size of the WORK !> array, returns this value as the first entry of the WORK !> array, and no error message related to LWORK is issued !> by XERBLA. !> INFO !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Contributors: !> !> November 2019, Igor Kozachenko, !> Computer Science Division, !> University of California, Berkeley !> !> Definition at line 174 of file cungtsqr.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 SRC/cungtsqr.f(3)