.TH "SRC/ctrevc.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/ctrevc.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBctrevc\fP (side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, mm, m, work, rwork, info)" .br .RI "\fBCTREVC\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine ctrevc (character side, character howmny, logical, dimension( * ) select, integer n, complex, dimension( ldt, * ) t, integer ldt, complex, dimension( ldvl, * ) vl, integer ldvl, complex, dimension( ldvr, * ) vr, integer ldvr, integer mm, integer m, complex, dimension( * ) work, real, dimension( * ) rwork, integer info)" .PP \fBCTREVC\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> CTREVC computes some or all of the right and/or left eigenvectors of !> a complex upper triangular matrix T\&. !> Matrices of this type are produced by the Schur factorization of !> a complex general matrix: A = Q*T*Q**H, as computed by CHSEQR\&. !> !> The right eigenvector x and the left eigenvector y of T corresponding !> to an eigenvalue w are defined by: !> !> T*x = w*x, (y**H)*T = w*(y**H) !> !> where y**H denotes the conjugate transpose of the vector y\&. !> The eigenvalues are not input to this routine, but are read directly !> from the diagonal of T\&. !> !> This routine returns the matrices X and/or Y of right and left !> eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an !> input matrix\&. If Q is the unitary factor that reduces a matrix A to !> Schur form T, then Q*X and Q*Y are the matrices of right and left !> eigenvectors of A\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fISIDE\fP .PP .nf !> SIDE is CHARACTER*1 !> = 'R': compute right eigenvectors only; !> = 'L': compute left eigenvectors only; !> = 'B': compute both right and left eigenvectors\&. !> .fi .PP .br \fIHOWMNY\fP .PP .nf !> HOWMNY is CHARACTER*1 !> = 'A': compute all right and/or left eigenvectors; !> = 'B': compute all right and/or left eigenvectors, !> backtransformed using the matrices supplied in !> VR and/or VL; !> = 'S': compute selected right and/or left eigenvectors, !> as indicated by the logical array SELECT\&. !> .fi .PP .br \fISELECT\fP .PP .nf !> SELECT is LOGICAL array, dimension (N) !> If HOWMNY = 'S', SELECT specifies the eigenvectors to be !> computed\&. !> The eigenvector corresponding to the j-th eigenvalue is !> computed if SELECT(j) = \&.TRUE\&.\&. !> Not referenced if HOWMNY = 'A' or 'B'\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix T\&. N >= 0\&. !> .fi .PP .br \fIT\fP .PP .nf !> T is COMPLEX array, dimension (LDT,N) !> The upper triangular matrix T\&. T is modified, but restored !> on exit\&. !> .fi .PP .br \fILDT\fP .PP .nf !> LDT is INTEGER !> The leading dimension of the array T\&. LDT >= max(1,N)\&. !> .fi .PP .br \fIVL\fP .PP .nf !> VL is COMPLEX array, dimension (LDVL,MM) !> On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must !> contain an N-by-N matrix Q (usually the unitary matrix Q of !> Schur vectors returned by CHSEQR)\&. !> On exit, if SIDE = 'L' or 'B', VL contains: !> if HOWMNY = 'A', the matrix Y of left eigenvectors of T; !> if HOWMNY = 'B', the matrix Q*Y; !> if HOWMNY = 'S', the left eigenvectors of T specified by !> SELECT, stored consecutively in the columns !> of VL, in the same order as their !> eigenvalues\&. !> Not referenced if SIDE = 'R'\&. !> .fi .PP .br \fILDVL\fP .PP .nf !> LDVL is INTEGER !> The leading dimension of the array VL\&. LDVL >= 1, and if !> SIDE = 'L' or 'B', LDVL >= N\&. !> .fi .PP .br \fIVR\fP .PP .nf !> VR is COMPLEX array, dimension (LDVR,MM) !> On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must !> contain an N-by-N matrix Q (usually the unitary matrix Q of !> Schur vectors returned by CHSEQR)\&. !> On exit, if SIDE = 'R' or 'B', VR contains: !> if HOWMNY = 'A', the matrix X of right eigenvectors of T; !> if HOWMNY = 'B', the matrix Q*X; !> if HOWMNY = 'S', the right eigenvectors of T specified by !> SELECT, stored consecutively in the columns !> of VR, in the same order as their !> eigenvalues\&. !> Not referenced if SIDE = 'L'\&. !> .fi .PP .br \fILDVR\fP .PP .nf !> LDVR is INTEGER !> The leading dimension of the array VR\&. LDVR >= 1, and if !> SIDE = 'R' or 'B'; LDVR >= N\&. !> .fi .PP .br \fIMM\fP .PP .nf !> MM is INTEGER !> The number of columns in the arrays VL and/or VR\&. MM >= M\&. !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The number of columns in the arrays VL and/or VR actually !> used to store the eigenvectors\&. If HOWMNY = 'A' or 'B', M !> is set to N\&. Each selected eigenvector occupies one !> column\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX array, dimension (2*N) !> .fi .PP .br \fIRWORK\fP .PP .nf !> RWORK is REAL array, dimension (N) !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> The algorithm used in this program is basically backward (forward) !> substitution, with scaling to make the the code robust against !> possible overflow\&. !> !> Each eigenvector is normalized so that the element of largest !> magnitude has magnitude 1; here the magnitude of a complex number !> (x,y) is taken to be |x| + |y|\&. !> .fi .PP .RE .PP .PP Definition at line \fB216\fP of file \fBctrevc\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.