TESTING/LIN/ctpt01.f(3) Library Functions Manual TESTING/LIN/ctpt01.f(3) NAME TESTING/LIN/ctpt01.f SYNOPSIS Functions/Subroutines subroutine ctpt01 (uplo, diag, n, ap, ainvp, rcond, rwork, resid) CTPT01 Function/Subroutine Documentation subroutine ctpt01 (character uplo, character diag, integer n, complex, dimension( * ) ap, complex, dimension( * ) ainvp, real rcond, real, dimension( * ) rwork, real resid) CTPT01 Purpose: !> !> CTPT01 computes the residual for a triangular matrix A times its !> inverse when A is stored in packed format: !> RESID = norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS ), !> where EPS is the machine epsilon. !> Parameters UPLO !> UPLO is CHARACTER*1 !> Specifies whether the matrix A is upper or lower triangular. !> = 'U': Upper triangular !> = 'L': Lower triangular !> DIAG !> DIAG is CHARACTER*1 !> Specifies whether or not the matrix A is unit triangular. !> = 'N': Non-unit triangular !> = 'U': Unit triangular !> N !> N is INTEGER !> The order of the matrix A. N >= 0. !> AP !> AP is COMPLEX array, dimension (N*(N+1)/2) !> The original upper or lower triangular matrix A, packed !> columnwise in a linear array. The j-th column of A is stored !> in the array AP as follows: !> if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', !> AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n. !> AINVP !> AINVP is COMPLEX array, dimension (N*(N+1)/2) !> On entry, the (triangular) inverse of the matrix A, packed !> columnwise in a linear array as in AP. !> On exit, the contents of AINVP are destroyed. !> RCOND !> RCOND is REAL !> The reciprocal condition number of A, computed as !> 1/(norm(A) * norm(AINV)). !> RWORK !> RWORK is REAL array, dimension (N) !> RESID !> RESID is REAL !> norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS ) !> Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Definition at line 108 of file ctpt01.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 TESTING/LIN/ctpt01.f(3)