TESTING/LIN/cqrt01.f(3) Library Functions Manual TESTING/LIN/cqrt01.f(3)

TESTING/LIN/cqrt01.f


subroutine cqrt01 (m, n, a, af, q, r, lda, tau, work, lwork, rwork, result)
CQRT01

CQRT01

Purpose:

!>
!> CQRT01 tests CGEQRF, which computes the QR factorization of an m-by-n
!> matrix A, and partially tests CUNGQR which forms the m-by-m
!> orthogonal matrix Q.
!>
!> CQRT01 compares R with Q'*A, and checks that Q is orthogonal.
!> 

Parameters

M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 

A

!>          A is COMPLEX array, dimension (LDA,N)
!>          The m-by-n matrix A.
!> 

AF

!>          AF is COMPLEX array, dimension (LDA,N)
!>          Details of the QR factorization of A, as returned by CGEQRF.
!>          See CGEQRF for further details.
!> 

Q

!>          Q is COMPLEX array, dimension (LDA,M)
!>          The m-by-m orthogonal matrix Q.
!> 

R

!>          R is COMPLEX array, dimension (LDA,max(M,N))
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the arrays A, AF, Q and R.
!>          LDA >= max(M,N).
!> 

TAU

!>          TAU is COMPLEX array, dimension (min(M,N))
!>          The scalar factors of the elementary reflectors, as returned
!>          by CGEQRF.
!> 

WORK

!>          WORK is COMPLEX array, dimension (LWORK)
!> 

LWORK

!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!> 

RWORK

!>          RWORK is REAL array, dimension (M)
!> 

RESULT

!>          RESULT is REAL array, dimension (2)
!>          The test ratios:
!>          RESULT(1) = norm( R - Q'*A ) / ( M * norm(A) * EPS )
!>          RESULT(2) = norm( I - Q'*Q ) / ( M * EPS )
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 124 of file cqrt01.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK