.TH "TESTING/EIG/clatm4.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME TESTING/EIG/clatm4.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBclatm4\fP (itype, n, nz1, nz2, rsign, amagn, rcond, triang, idist, iseed, a, lda)" .br .RI "\fBCLATM4\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine clatm4 (integer itype, integer n, integer nz1, integer nz2, logical rsign, real amagn, real rcond, real triang, integer idist, integer, dimension( 4 ) iseed, complex, dimension( lda, * ) a, integer lda)" .PP \fBCLATM4\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> CLATM4 generates basic square matrices, which may later be !> multiplied by others in order to produce test matrices\&. It is !> intended mainly to be used to test the generalized eigenvalue !> routines\&. !> !> It first generates the diagonal and (possibly) subdiagonal, !> according to the value of ITYPE, NZ1, NZ2, RSIGN, AMAGN, and RCOND\&. !> It then fills in the upper triangle with random numbers, if TRIANG is !> non-zero\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIITYPE\fP .PP .nf !> ITYPE is INTEGER !> The of matrix on the diagonal and sub-diagonal\&. !> If ITYPE < 0, then type abs(ITYPE) is generated and then !> swapped end for end (A(I,J) := A'(N-J,N-I)\&.) See also !> the description of AMAGN and RSIGN\&. !> !> Special types: !> = 0: the zero matrix\&. !> = 1: the identity\&. !> = 2: a transposed Jordan block\&. !> = 3: If N is odd, then a k+1 x k+1 transposed Jordan block !> followed by a k x k identity block, where k=(N-1)/2\&. !> If N is even, then k=(N-2)/2, and a zero diagonal entry !> is tacked onto the end\&. !> !> Diagonal types\&. The diagonal consists of NZ1 zeros, then !> k=N-NZ1-NZ2 nonzeros\&. The subdiagonal is zero\&. ITYPE !> specifies the nonzero diagonal entries as follows: !> = 4: 1, \&.\&.\&., k !> = 5: 1, RCOND, \&.\&.\&., RCOND !> = 6: 1, \&.\&.\&., 1, RCOND !> = 7: 1, a, a^2, \&.\&.\&., a^(k-1)=RCOND !> = 8: 1, 1-d, 1-2*d, \&.\&.\&., 1-(k-1)*d=RCOND !> = 9: random numbers chosen from (RCOND,1) !> = 10: random numbers with distribution IDIST (see CLARND\&.) !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix\&. !> .fi .PP .br \fINZ1\fP .PP .nf !> NZ1 is INTEGER !> If abs(ITYPE) > 3, then the first NZ1 diagonal entries will !> be zero\&. !> .fi .PP .br \fINZ2\fP .PP .nf !> NZ2 is INTEGER !> If abs(ITYPE) > 3, then the last NZ2 diagonal entries will !> be zero\&. !> .fi .PP .br \fIRSIGN\fP .PP .nf !> RSIGN is LOGICAL !> = \&.TRUE\&.: The diagonal and subdiagonal entries will be !> multiplied by random numbers of magnitude 1\&. !> = \&.FALSE\&.: The diagonal and subdiagonal entries will be !> left as they are (usually non-negative real\&.) !> .fi .PP .br \fIAMAGN\fP .PP .nf !> AMAGN is REAL !> The diagonal and subdiagonal entries will be multiplied by !> AMAGN\&. !> .fi .PP .br \fIRCOND\fP .PP .nf !> RCOND is REAL !> If abs(ITYPE) > 4, then the smallest diagonal entry will be !> RCOND\&. RCOND must be between 0 and 1\&. !> .fi .PP .br \fITRIANG\fP .PP .nf !> TRIANG is REAL !> The entries above the diagonal will be random numbers with !> magnitude bounded by TRIANG (i\&.e\&., random numbers multiplied !> by TRIANG\&.) !> .fi .PP .br \fIIDIST\fP .PP .nf !> IDIST is INTEGER !> On entry, DIST specifies the type of distribution to be used !> to generate a random matrix \&. !> = 1: real and imaginary parts each UNIFORM( 0, 1 ) !> = 2: real and imaginary parts each UNIFORM( -1, 1 ) !> = 3: real and imaginary parts each NORMAL( 0, 1 ) !> = 4: complex number uniform in DISK( 0, 1 ) !> .fi .PP .br \fIISEED\fP .PP .nf !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator\&. The values of ISEED are changed on exit, and can !> be used in the next call to CLATM4 to continue the same !> random number sequence\&. !> Note: ISEED(4) should be odd, for the random number generator !> used at present\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX array, dimension (LDA, N) !> Array to be computed\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> Leading dimension of A\&. Must be at least 1 and at least N\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB169\fP of file \fBclatm4\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.