.TH "SRC/clatbs.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/clatbs.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBclatbs\fP (uplo, trans, diag, normin, n, kd, ab, ldab, x, scale, cnorm, info)" .br .RI "\fBCLATBS\fP solves a triangular banded system of equations\&. " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine clatbs (character uplo, character trans, character diag, character normin, integer n, integer kd, complex, dimension( ldab, * ) ab, integer ldab, complex, dimension( * ) x, real scale, real, dimension( * ) cnorm, integer info)" .PP \fBCLATBS\fP solves a triangular banded system of equations\&. .PP \fBPurpose:\fP .RS 4 .PP .nf CLATBS solves one of the triangular systems A * x = s*b, A**T * x = s*b, or A**H * x = s*b, with scaling to prevent overflow, where A is an upper or lower triangular band matrix\&. Here A**T denotes the transpose of A, x and b are n-element vectors, and s is a scaling factor, usually less than or equal to 1, chosen so that the components of x will be less than the overflow threshold\&. If the unscaled problem will not cause overflow, the Level 2 BLAS routine CTBSV is called\&. If the matrix A is singular (A(j,j) = 0 for some j), then s is set to 0 and a non-trivial solution to A*x = 0 is returned\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 Specifies whether the matrix A is upper or lower triangular\&. = 'U': Upper triangular = 'L': Lower triangular .fi .PP .br \fITRANS\fP .PP .nf TRANS is CHARACTER*1 Specifies the operation applied to A\&. = 'N': Solve A * x = s*b (No transpose) = 'T': Solve A**T * x = s*b (Transpose) = 'C': Solve A**H * x = s*b (Conjugate transpose) .fi .PP .br \fIDIAG\fP .PP .nf DIAG is CHARACTER*1 Specifies whether or not the matrix A is unit triangular\&. = 'N': Non-unit triangular = 'U': Unit triangular .fi .PP .br \fINORMIN\fP .PP .nf NORMIN is CHARACTER*1 Specifies whether CNORM has been set or not\&. = 'Y': CNORM contains the column norms on entry = 'N': CNORM is not set on entry\&. On exit, the norms will be computed and stored in CNORM\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrix A\&. N >= 0\&. .fi .PP .br \fIKD\fP .PP .nf KD is INTEGER The number of subdiagonals or superdiagonals in the triangular matrix A\&. KD >= 0\&. .fi .PP .br \fIAB\fP .PP .nf AB is COMPLEX array, dimension (LDAB,N) The upper or lower triangular band matrix A, stored in the first KD+1 rows of the array\&. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd)\&. .fi .PP .br \fILDAB\fP .PP .nf LDAB is INTEGER The leading dimension of the array AB\&. LDAB >= KD+1\&. .fi .PP .br \fIX\fP .PP .nf X is COMPLEX array, dimension (N) On entry, the right hand side b of the triangular system\&. On exit, X is overwritten by the solution vector x\&. .fi .PP .br \fISCALE\fP .PP .nf SCALE is REAL The scaling factor s for the triangular system A * x = s*b, A**T * x = s*b, or A**H * x = s*b\&. If SCALE = 0, the matrix A is singular or badly scaled, and the vector x is an exact or approximate solution to A*x = 0\&. .fi .PP .br \fICNORM\fP .PP .nf CNORM is REAL array, dimension (N) If NORMIN = 'Y', CNORM is an input argument and CNORM(j) contains the norm of the off-diagonal part of the j-th column of A\&. If TRANS = 'N', CNORM(j) must be greater than or equal to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j) must be greater than or equal to the 1-norm\&. If NORMIN = 'N', CNORM is an output argument and CNORM(j) returns the 1-norm of the offdiagonal part of the j-th column of A\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -k, the k-th argument had an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf A rough bound on x is computed; if that is less than overflow, CTBSV is called, otherwise, specific code is used which checks for possible overflow or divide-by-zero at every operation\&. A columnwise scheme is used for solving A*x = b\&. The basic algorithm if A is lower triangular is x[1:n] := b[1:n] for j = 1, \&.\&.\&., n x(j) := x(j) / A(j,j) x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j] end Define bounds on the components of x after j iterations of the loop: M(j) = bound on x[1:j] G(j) = bound on x[j+1:n] Initially, let M(0) = 0 and G(0) = max{x(i), i=1,\&.\&.\&.,n}\&. Then for iteration j+1 we have M(j+1) <= G(j) / | A(j+1,j+1) | G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] | <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | ) where CNORM(j+1) is greater than or equal to the infinity-norm of column j+1 of A, not counting the diagonal\&. Hence G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | ) 1<=i<=j and |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| ) 1<=i< j Since |x(j)| <= M(j), we use the Level 2 BLAS routine CTBSV if the reciprocal of the largest M(j), j=1,\&.\&.,n, is larger than max(underflow, 1/overflow)\&. The bound on x(j) is also used to determine when a step in the columnwise method can be performed without fear of overflow\&. If the computed bound is greater than a large constant, x is scaled to prevent overflow, but if the bound overflows, x is set to 0, x(j) to 1, and scale to 0, and a non-trivial solution to A*x = 0 is found\&. Similarly, a row-wise scheme is used to solve A**T *x = b or A**H *x = b\&. The basic algorithm for A upper triangular is for j = 1, \&.\&.\&., n x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j) end We simultaneously compute two bounds G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j M(j) = bound on x(i), 1<=i<=j The initial values are G(0) = 0, M(0) = max{b(i), i=1,\&.\&.,n}, and we add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1\&. Then the bound on x(j) is M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) | <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| ) 1<=i<=j and we can safely call CTBSV if 1/M(n) and 1/G(n) are both greater than max(underflow, 1/overflow)\&. .fi .PP .RE .PP .PP Definition at line \fB241\fP of file \fBclatbs\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.