.TH "TESTING/MATGEN/claror.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME TESTING/MATGEN/claror.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBclaror\fP (side, init, m, n, a, lda, iseed, x, info)" .br .RI "\fBCLAROR\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine claror (character side, character init, integer m, integer n, complex, dimension( lda, * ) a, integer lda, integer, dimension( 4 ) iseed, complex, dimension( * ) x, integer info)" .PP \fBCLAROR\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> CLAROR pre- or post-multiplies an M by N matrix A by a random !> unitary matrix U, overwriting A\&. A may optionally be !> initialized to the identity matrix before multiplying by U\&. !> U is generated using the method of G\&.W\&. Stewart !> ( SIAM J\&. Numer\&. Anal\&. 17, 1980, pp\&. 403-409 )\&. !> (BLAS-2 version) !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fISIDE\fP .PP .nf !> SIDE is CHARACTER*1 !> SIDE specifies whether A is multiplied on the left or right !> by U\&. !> SIDE = 'L' Multiply A on the left (premultiply) by U !> SIDE = 'R' Multiply A on the right (postmultiply) by UC> SIDE = 'C' Multiply A on the left by U and the right by UC> SIDE = 'T' Multiply A on the left by U and the right by U' !> Not modified\&. !> .fi .PP .br \fIINIT\fP .PP .nf !> INIT is CHARACTER*1 !> INIT specifies whether or not A should be initialized to !> the identity matrix\&. !> INIT = 'I' Initialize A to (a section of) the !> identity matrix before applying U\&. !> INIT = 'N' No initialization\&. Apply U to the !> input matrix A\&. !> !> INIT = 'I' may be used to generate square (i\&.e\&., unitary) !> or rectangular orthogonal matrices (orthogonality being !> in the sense of CDOTC): !> !> For square matrices, M=N, and SIDE many be either 'L' or !> 'R'; the rows will be orthogonal to each other, as will the !> columns\&. !> For rectangular matrices where M < N, SIDE = 'R' will !> produce a dense matrix whose rows will be orthogonal and !> whose columns will not, while SIDE = 'L' will produce a !> matrix whose rows will be orthogonal, and whose first M !> columns will be orthogonal, the remaining columns being !> zero\&. !> For matrices where M > N, just use the previous !> explanation, interchanging 'L' and 'R' and and !> \&. !> !> Not modified\&. !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> Number of rows of A\&. Not modified\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> Number of columns of A\&. Not modified\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX array, dimension ( LDA, N ) !> Input and output array\&. Overwritten by U A ( if SIDE = 'L' ) !> or by A U ( if SIDE = 'R' ) !> or by U A U* ( if SIDE = 'C') !> or by U A U' ( if SIDE = 'T') on exit\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> Leading dimension of A\&. Must be at least MAX ( 1, M )\&. !> Not modified\&. !> .fi .PP .br \fIISEED\fP .PP .nf !> ISEED is INTEGER array, dimension ( 4 ) !> On entry ISEED specifies the seed of the random number !> generator\&. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096\&. Also, ISEED(4) must !> be odd\&. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers\&. The !> values of ISEED are changed on exit, and can be used in the !> next call to CLAROR to continue the same random number !> sequence\&. !> Modified\&. !> .fi .PP .br \fIX\fP .PP .nf !> X is COMPLEX array, dimension ( 3*MAX( M, N ) ) !> Workspace\&. Of length: !> 2*M + N if SIDE = 'L', !> 2*N + M if SIDE = 'R', !> 3*N if SIDE = 'C' or 'T'\&. !> Modified\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> An error flag\&. It is set to: !> 0 if no error\&. !> 1 if CLARND returned a bad random number (installation !> problem) !> -1 if SIDE is not L, R, C, or T\&. !> -3 if M is negative\&. !> -4 if N is negative or if SIDE is C or T and N is not equal !> to M\&. !> -6 if LDA is less than M\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB157\fP of file \fBclaror\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.