SRC/clarf.f(3) Library Functions Manual SRC/clarf.f(3)

SRC/clarf.f


subroutine clarf (side, m, n, v, incv, tau, c, ldc, work)
CLARF applies an elementary reflector to a general rectangular matrix.

CLARF applies an elementary reflector to a general rectangular matrix.

Purpose:

!>
!> CLARF applies a complex elementary reflector H to a complex M-by-N
!> matrix C, from either the left or the right. H is represented in the
!> form
!>
!>       H = I - tau * v * v**H
!>
!> where tau is a complex scalar and v is a complex vector.
!>
!> If tau = 0, then H is taken to be the unit matrix.
!>
!> To apply H**H (the conjugate transpose of H), supply conjg(tau) instead
!> tau.
!> 

Parameters

SIDE
!>          SIDE is CHARACTER*1
!>          = 'L': form  H * C
!>          = 'R': form  C * H
!> 

M

!>          M is INTEGER
!>          The number of rows of the matrix C.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix C.
!> 

V

!>          V is COMPLEX array, dimension
!>                     (1 + (M-1)*abs(INCV)) if SIDE = 'L'
!>                  or (1 + (N-1)*abs(INCV)) if SIDE = 'R'
!>          The vector v in the representation of H. V is not used if
!>          TAU = 0.
!> 

INCV

!>          INCV is INTEGER
!>          The increment between elements of v. INCV <> 0.
!> 

TAU

!>          TAU is COMPLEX
!>          The value tau in the representation of H.
!> 

C

!>          C is COMPLEX array, dimension (LDC,N)
!>          On entry, the M-by-N matrix C.
!>          On exit, C is overwritten by the matrix H * C if SIDE = 'L',
!>          or C * H if SIDE = 'R'.
!> 

LDC

!>          LDC is INTEGER
!>          The leading dimension of the array C. LDC >= max(1,M).
!> 

WORK

!>          WORK is COMPLEX array, dimension
!>                         (N) if SIDE = 'L'
!>                      or (M) if SIDE = 'R'
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 127 of file clarf.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK