.TH "SRC/claqps.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/claqps.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBclaqps\fP (m, n, offset, nb, kb, a, lda, jpvt, tau, vn1, vn2, auxv, f, ldf)" .br .RI "\fBCLAQPS\fP computes a step of QR factorization with column pivoting of a real m-by-n matrix A by using BLAS level 3\&. " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine claqps (integer m, integer n, integer offset, integer nb, integer kb, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) jpvt, complex, dimension( * ) tau, real, dimension( * ) vn1, real, dimension( * ) vn2, complex, dimension( * ) auxv, complex, dimension( ldf, * ) f, integer ldf)" .PP \fBCLAQPS\fP computes a step of QR factorization with column pivoting of a real m-by-n matrix A by using BLAS level 3\&. .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> CLAQPS computes a step of QR factorization with column pivoting !> of a complex M-by-N matrix A by using Blas-3\&. It tries to factorize !> NB columns from A starting from the row OFFSET+1, and updates all !> of the matrix with Blas-3 xGEMM\&. !> !> In some cases, due to catastrophic cancellations, it cannot !> factorize NB columns\&. Hence, the actual number of factorized !> columns is returned in KB\&. !> !> Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf !> M is INTEGER !> The number of rows of the matrix A\&. M >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns of the matrix A\&. N >= 0 !> .fi .PP .br \fIOFFSET\fP .PP .nf !> OFFSET is INTEGER !> The number of rows of A that have been factorized in !> previous steps\&. !> .fi .PP .br \fINB\fP .PP .nf !> NB is INTEGER !> The number of columns to factorize\&. !> .fi .PP .br \fIKB\fP .PP .nf !> KB is INTEGER !> The number of columns actually factorized\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX array, dimension (LDA,N) !> On entry, the M-by-N matrix A\&. !> On exit, block A(OFFSET+1:M,1:KB) is the triangular !> factor obtained and block A(1:OFFSET,1:N) has been !> accordingly pivoted, but no factorized\&. !> The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has !> been updated\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,M)\&. !> .fi .PP .br \fIJPVT\fP .PP .nf !> JPVT is INTEGER array, dimension (N) !> JPVT(I) = K <==> Column K of the full matrix A has been !> permuted into position I in AP\&. !> .fi .PP .br \fITAU\fP .PP .nf !> TAU is COMPLEX array, dimension (KB) !> The scalar factors of the elementary reflectors\&. !> .fi .PP .br \fIVN1\fP .PP .nf !> VN1 is REAL array, dimension (N) !> The vector with the partial column norms\&. !> .fi .PP .br \fIVN2\fP .PP .nf !> VN2 is REAL array, dimension (N) !> The vector with the exact column norms\&. !> .fi .PP .br \fIAUXV\fP .PP .nf !> AUXV is COMPLEX array, dimension (NB) !> Auxiliary vector\&. !> .fi .PP .br \fIF\fP .PP .nf !> F is COMPLEX array, dimension (LDF,NB) !> Matrix F**H = L * Y**H * A\&. !> .fi .PP .br \fILDF\fP .PP .nf !> LDF is INTEGER !> The leading dimension of the array F\&. LDF >= max(1,N)\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 G\&. Quintana-Orti, Depto\&. de Informatica, Universidad Jaime I, Spain X\&. Sun, Computer Science Dept\&., Duke University, USA .RE .PP .br Partial column norm updating strategy modified on April 2011 Z\&. Drmac and Z\&. Bujanovic, Dept\&. of Mathematics, University of Zagreb, Croatia\&. .PP \fBReferences:\fP .RS 4 LAPACK Working Note 176 .RE .PP .PP Definition at line \fB176\fP of file \fBclaqps\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.