SRC/clags2.f(3) Library Functions Manual SRC/clags2.f(3) NAME SRC/clags2.f SYNOPSIS Functions/Subroutines subroutine clags2 (upper, a1, a2, a3, b1, b2, b3, csu, snu, csv, snv, csq, snq) CLAGS2 Function/Subroutine Documentation subroutine clags2 (logical upper, real a1, complex a2, real a3, real b1, complex b2, real b3, real csu, complex snu, real csv, complex snv, real csq, complex snq) CLAGS2 Purpose: !> !> CLAGS2 computes 2-by-2 unitary matrices U, V and Q, such !> that if ( UPPER ) then !> !> U**H *A*Q = U**H *( A1 A2 )*Q = ( x 0 ) !> ( 0 A3 ) ( x x ) !> and !> V**H*B*Q = V**H *( B1 B2 )*Q = ( x 0 ) !> ( 0 B3 ) ( x x ) !> !> or if ( .NOT.UPPER ) then !> !> U**H *A*Q = U**H *( A1 0 )*Q = ( x x ) !> ( A2 A3 ) ( 0 x ) !> and !> V**H *B*Q = V**H *( B1 0 )*Q = ( x x ) !> ( B2 B3 ) ( 0 x ) !> where !> !> U = ( CSU SNU ), V = ( CSV SNV ), !> ( -SNU**H CSU ) ( -SNV**H CSV ) !> !> Q = ( CSQ SNQ ) !> ( -SNQ**H CSQ ) !> !> The rows of the transformed A and B are parallel. Moreover, if the !> input 2-by-2 matrix A is not zero, then the transformed (1,1) entry !> of A is not zero. If the input matrices A and B are both not zero, !> then the transformed (2,2) element of B is not zero, except when the !> first rows of input A and B are parallel and the second rows are !> zero. !> Parameters UPPER !> UPPER is LOGICAL !> = .TRUE.: the input matrices A and B are upper triangular. !> = .FALSE.: the input matrices A and B are lower triangular. !> A1 !> A1 is REAL !> A2 !> A2 is COMPLEX !> A3 !> A3 is REAL !> On entry, A1, A2 and A3 are elements of the input 2-by-2 !> upper (lower) triangular matrix A. !> B1 !> B1 is REAL !> B2 !> B2 is COMPLEX !> B3 !> B3 is REAL !> On entry, B1, B2 and B3 are elements of the input 2-by-2 !> upper (lower) triangular matrix B. !> CSU !> CSU is REAL !> SNU !> SNU is COMPLEX !> The desired unitary matrix U. !> CSV !> CSV is REAL !> SNV !> SNV is COMPLEX !> The desired unitary matrix V. !> CSQ !> CSQ is REAL !> SNQ !> SNQ is COMPLEX !> The desired unitary matrix Q. !> Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Definition at line 156 of file clags2.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 SRC/clags2.f(3)