TESTING/LIN/chet01.f(3) Library Functions Manual TESTING/LIN/chet01.f(3)

TESTING/LIN/chet01.f


subroutine chet01 (uplo, n, a, lda, afac, ldafac, ipiv, c, ldc, rwork, resid)
CHET01

CHET01

Purpose:

!>
!> CHET01 reconstructs a Hermitian indefinite matrix A from its
!> block L*D*L' or U*D*U' factorization and computes the residual
!>    norm( C - A ) / ( N * norm(A) * EPS ),
!> where C is the reconstructed matrix, EPS is the machine epsilon,
!> L' is the conjugate transpose of L, and U' is the conjugate transpose
!> of U.
!> 

Parameters

UPLO
!>          UPLO is CHARACTER*1
!>          Specifies whether the upper or lower triangular part of the
!>          Hermitian matrix A is stored:
!>          = 'U':  Upper triangular
!>          = 'L':  Lower triangular
!> 

N

!>          N is INTEGER
!>          The number of rows and columns of the matrix A.  N >= 0.
!> 

A

!>          A is COMPLEX array, dimension (LDA,N)
!>          The original Hermitian matrix A.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N)
!> 

AFAC

!>          AFAC is COMPLEX array, dimension (LDAFAC,N)
!>          The factored form of the matrix A.  AFAC contains the block
!>          diagonal matrix D and the multipliers used to obtain the
!>          factor L or U from the block L*D*L' or U*D*U' factorization
!>          as computed by CHETRF.
!> 

LDAFAC

!>          LDAFAC is INTEGER
!>          The leading dimension of the array AFAC.  LDAFAC >= max(1,N).
!> 

IPIV

!>          IPIV is INTEGER array, dimension (N)
!>          The pivot indices from CHETRF.
!> 

C

!>          C is COMPLEX array, dimension (LDC,N)
!> 

LDC

!>          LDC is INTEGER
!>          The leading dimension of the array C.  LDC >= max(1,N).
!> 

RWORK

!>          RWORK is REAL array, dimension (N)
!> 

RESID

!>          RESID is REAL
!>          If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
!>          If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 124 of file chet01.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK