.TH "SRC/chegs2.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/chegs2.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBchegs2\fP (itype, uplo, n, a, lda, b, ldb, info)" .br .RI "\fBCHEGS2\fP reduces a Hermitian definite generalized eigenproblem to standard form, using the factorization results obtained from cpotrf (unblocked algorithm)\&. " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine chegs2 (integer itype, character uplo, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldb, * ) b, integer ldb, integer info)" .PP \fBCHEGS2\fP reduces a Hermitian definite generalized eigenproblem to standard form, using the factorization results obtained from cpotrf (unblocked algorithm)\&. .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> CHEGS2 reduces a complex Hermitian-definite generalized !> eigenproblem to standard form\&. !> !> If ITYPE = 1, the problem is A*x = lambda*B*x, !> and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H) !> !> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or !> B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H *A*L\&. !> !> B must have been previously factorized as U**H *U or L*L**H by ZPOTRF\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIITYPE\fP .PP .nf !> ITYPE is INTEGER !> = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H); !> = 2 or 3: compute U*A*U**H or L**H *A*L\&. !> .fi .PP .br \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> Hermitian matrix A is stored, and how B has been factorized\&. !> = 'U': Upper triangular !> = 'L': Lower triangular !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrices A and B\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX array, dimension (LDA,N) !> On entry, the Hermitian matrix A\&. If UPLO = 'U', the leading !> n by n upper triangular part of A contains the upper !> triangular part of the matrix A, and the strictly lower !> triangular part of A is not referenced\&. If UPLO = 'L', the !> leading n by n lower triangular part of A contains the lower !> triangular part of the matrix A, and the strictly upper !> triangular part of A is not referenced\&. !> !> On exit, if INFO = 0, the transformed matrix, stored in the !> same format as A\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,N)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is COMPLEX array, dimension (LDB,N) !> The triangular factor from the Cholesky factorization of B, !> as returned by CPOTRF\&. !> B is modified by the routine but restored on exit\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit\&. !> < 0: if INFO = -i, the i-th argument had an illegal value\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB127\fP of file \fBchegs2\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.