.TH "TESTING/EIG/cgqrts.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME TESTING/EIG/cgqrts.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBcgqrts\fP (n, m, p, a, af, q, r, lda, taua, b, bf, z, t, bwk, ldb, taub, work, lwork, rwork, result)" .br .RI "\fBCGQRTS\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine cgqrts (integer n, integer m, integer p, complex, dimension( lda, * ) a, complex, dimension( lda, * ) af, complex, dimension( lda, * ) q, complex, dimension( lda, * ) r, integer lda, complex, dimension( * ) taua, complex, dimension( ldb, * ) b, complex, dimension( ldb, * ) bf, complex, dimension( ldb, * ) z, complex, dimension( ldb, * ) t, complex, dimension( ldb, * ) bwk, integer ldb, complex, dimension( * ) taub, complex, dimension( lwork ) work, integer lwork, real, dimension( * ) rwork, real, dimension( 4 ) result)" .PP \fBCGQRTS\fP .PP \fBPurpose:\fP .RS 4 .PP .nf CGQRTS tests CGGQRF, which computes the GQR factorization of an N-by-M matrix A and a N-by-P matrix B: A = Q*R and B = Q*T*Z\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIN\fP .PP .nf N is INTEGER The number of rows of the matrices A and B\&. N >= 0\&. .fi .PP .br \fIM\fP .PP .nf M is INTEGER The number of columns of the matrix A\&. M >= 0\&. .fi .PP .br \fIP\fP .PP .nf P is INTEGER The number of columns of the matrix B\&. P >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX array, dimension (LDA,M) The N-by-M matrix A\&. .fi .PP .br \fIAF\fP .PP .nf AF is COMPLEX array, dimension (LDA,N) Details of the GQR factorization of A and B, as returned by CGGQRF, see CGGQRF for further details\&. .fi .PP .br \fIQ\fP .PP .nf Q is COMPLEX array, dimension (LDA,N) The M-by-M unitary matrix Q\&. .fi .PP .br \fIR\fP .PP .nf R is COMPLEX array, dimension (LDA,MAX(M,N)) .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the arrays A, AF, R and Q\&. LDA >= max(M,N)\&. .fi .PP .br \fITAUA\fP .PP .nf TAUA is COMPLEX array, dimension (min(M,N)) The scalar factors of the elementary reflectors, as returned by CGGQRF\&. .fi .PP .br \fIB\fP .PP .nf B is COMPLEX array, dimension (LDB,P) On entry, the N-by-P matrix A\&. .fi .PP .br \fIBF\fP .PP .nf BF is COMPLEX array, dimension (LDB,N) Details of the GQR factorization of A and B, as returned by CGGQRF, see CGGQRF for further details\&. .fi .PP .br \fIZ\fP .PP .nf Z is COMPLEX array, dimension (LDB,P) The P-by-P unitary matrix Z\&. .fi .PP .br \fIT\fP .PP .nf T is COMPLEX array, dimension (LDB,max(P,N)) .fi .PP .br \fIBWK\fP .PP .nf BWK is COMPLEX array, dimension (LDB,N) .fi .PP .br \fILDB\fP .PP .nf LDB is INTEGER The leading dimension of the arrays B, BF, Z and T\&. LDB >= max(P,N)\&. .fi .PP .br \fITAUB\fP .PP .nf TAUB is COMPLEX array, dimension (min(P,N)) The scalar factors of the elementary reflectors, as returned by SGGRQF\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX array, dimension (LWORK) .fi .PP .br \fILWORK\fP .PP .nf LWORK is INTEGER The dimension of the array WORK, LWORK >= max(N,M,P)**2\&. .fi .PP .br \fIRWORK\fP .PP .nf RWORK is REAL array, dimension (max(N,M,P)) .fi .PP .br \fIRESULT\fP .PP .nf RESULT is REAL array, dimension (4) The test ratios: RESULT(1) = norm( R - Q'*A ) / ( MAX(M,N)*norm(A)*ULP) RESULT(2) = norm( T*Z - Q'*B ) / (MAX(P,N)*norm(B)*ULP) RESULT(3) = norm( I - Q'*Q ) / ( M*ULP ) RESULT(4) = norm( I - Z'*Z ) / ( P*ULP ) .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB174\fP of file \fBcgqrts\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.