.TH "SRC/cggrqf.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/cggrqf.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBcggrqf\fP (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)" .br .RI "\fBCGGRQF\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine cggrqf (integer m, integer p, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) taua, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( * ) taub, complex, dimension( * ) work, integer lwork, integer info)" .PP \fBCGGRQF\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> CGGRQF computes a generalized RQ factorization of an M-by-N matrix A !> and a P-by-N matrix B: !> !> A = R*Q, B = Z*T*Q, !> !> where Q is an N-by-N unitary matrix, Z is a P-by-P unitary !> matrix, and R and T assume one of the forms: !> !> if M <= N, R = ( 0 R12 ) M, or if M > N, R = ( R11 ) M-N, !> N-M M ( R21 ) N !> N !> !> where R12 or R21 is upper triangular, and !> !> if P >= N, T = ( T11 ) N , or if P < N, T = ( T11 T12 ) P, !> ( 0 ) P-N P N-P !> N !> !> where T11 is upper triangular\&. !> !> In particular, if B is square and nonsingular, the GRQ factorization !> of A and B implicitly gives the RQ factorization of A*inv(B): !> !> A*inv(B) = (R*inv(T))*Z**H !> !> where inv(B) denotes the inverse of the matrix B, and Z**H denotes the !> conjugate transpose of the matrix Z\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf !> M is INTEGER !> The number of rows of the matrix A\&. M >= 0\&. !> .fi .PP .br \fIP\fP .PP .nf !> P is INTEGER !> The number of rows of the matrix B\&. P >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns of the matrices A and B\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX array, dimension (LDA,N) !> On entry, the M-by-N matrix A\&. !> On exit, if M <= N, the upper triangle of the subarray !> A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R; !> if M > N, the elements on and above the (M-N)-th subdiagonal !> contain the M-by-N upper trapezoidal matrix R; the remaining !> elements, with the array TAUA, represent the unitary !> matrix Q as a product of elementary reflectors (see Further !> Details)\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,M)\&. !> .fi .PP .br \fITAUA\fP .PP .nf !> TAUA is COMPLEX array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors which !> represent the unitary matrix Q (see Further Details)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is COMPLEX array, dimension (LDB,N) !> On entry, the P-by-N matrix B\&. !> On exit, the elements on and above the diagonal of the array !> contain the min(P,N)-by-N upper trapezoidal matrix T (T is !> upper triangular if P >= N); the elements below the diagonal, !> with the array TAUB, represent the unitary matrix Z as a !> product of elementary reflectors (see Further Details)\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,P)\&. !> .fi .PP .br \fITAUB\fP .PP .nf !> TAUB is COMPLEX array, dimension (min(P,N)) !> The scalar factors of the elementary reflectors which !> represent the unitary matrix Z (see Further Details)\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The dimension of the array WORK\&. LWORK >= max(1,N,M,P)\&. !> For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3), !> where NB1 is the optimal blocksize for the RQ factorization !> of an M-by-N matrix, NB2 is the optimal blocksize for the !> QR factorization of a P-by-N matrix, and NB3 is the optimal !> blocksize for a call of CUNMRQ\&. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO=-i, the i-th argument had an illegal value\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(1) H(2) \&. \&. \&. H(k), where k = min(m,n)\&. !> !> Each H(i) has the form !> !> H(i) = I - taua * v * v**H !> !> where taua is a complex scalar, and v is a complex vector with !> v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in !> A(m-k+i,1:n-k+i-1), and taua in TAUA(i)\&. !> To form Q explicitly, use LAPACK subroutine CUNGRQ\&. !> To use Q to update another matrix, use LAPACK subroutine CUNMRQ\&. !> !> The matrix Z is represented as a product of elementary reflectors !> !> Z = H(1) H(2) \&. \&. \&. H(k), where k = min(p,n)\&. !> !> Each H(i) has the form !> !> H(i) = I - taub * v * v**H !> !> where taub is a complex scalar, and v is a complex vector with !> v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i), !> and taub in TAUB(i)\&. !> To form Z explicitly, use LAPACK subroutine CUNGQR\&. !> To use Z to update another matrix, use LAPACK subroutine CUNMQR\&. !> .fi .PP .RE .PP .PP Definition at line \fB212\fP of file \fBcggrqf\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.