SRC/cgerqf.f(3) Library Functions Manual SRC/cgerqf.f(3) NAME SRC/cgerqf.f SYNOPSIS Functions/Subroutines subroutine cgerqf (m, n, a, lda, tau, work, lwork, info) CGERQF Function/Subroutine Documentation subroutine cgerqf (integer m, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( * ) work, integer lwork, integer info) CGERQF Purpose: !> !> CGERQF computes an RQ factorization of a complex M-by-N matrix A: !> A = R * Q. !> Parameters M !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> N !> N is INTEGER !> The number of columns of the matrix A. N >= 0. !> A !> A is COMPLEX array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, !> if m <= n, the upper triangle of the subarray !> A(1:m,n-m+1:n) contains the M-by-M upper triangular matrix R; !> if m >= n, the elements on and above the (m-n)-th subdiagonal !> contain the M-by-N upper trapezoidal matrix R; !> the remaining elements, with the array TAU, represent the !> unitary matrix Q as a product of min(m,n) elementary !> reflectors (see Further Details). !> LDA !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> TAU !> TAU is COMPLEX array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors (see Further !> Details). !> WORK !> WORK is COMPLEX array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> LWORK !> LWORK is INTEGER !> The dimension of the array WORK. !> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= M, otherwise. !> For optimum performance LWORK >= M*NB, where NB is !> the optimal blocksize. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> INFO !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Further Details: !> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(1)**H H(2)**H . . . H(k)**H, where k = min(m,n). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**H !> !> where tau is a complex scalar, and v is a complex vector with !> v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on !> exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i). !> Definition at line 138 of file cgerqf.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 SRC/cgerqf.f(3)