SRC/cgelqt.f(3) Library Functions Manual SRC/cgelqt.f(3) NAME SRC/cgelqt.f SYNOPSIS Functions/Subroutines subroutine cgelqt (m, n, mb, a, lda, t, ldt, work, info) CGELQT Function/Subroutine Documentation subroutine cgelqt (integer m, integer n, integer mb, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldt, * ) t, integer ldt, complex, dimension( * ) work, integer info) CGELQT Purpose: !> !> CGELQT computes a blocked LQ factorization of a complex M-by-N matrix A !> using the compact WY representation of Q. !> Parameters M !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> N !> N is INTEGER !> The number of columns of the matrix A. N >= 0. !> MB !> MB is INTEGER !> The block size to be used in the blocked QR. MIN(M,N) >= MB >= 1. !> A !> A is COMPLEX array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, the elements on and below the diagonal of the array !> contain the M-by-MIN(M,N) lower trapezoidal matrix L (L is !> lower triangular if M <= N); the elements above the diagonal !> are the rows of V. !> LDA !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> T !> T is COMPLEX array, dimension (LDT,MIN(M,N)) !> The upper triangular block reflectors stored in compact form !> as a sequence of upper triangular blocks. See below !> for further details. !> LDT !> LDT is INTEGER !> The leading dimension of the array T. LDT >= MB. !> WORK !> WORK is COMPLEX array, dimension (MB*N) !> INFO !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Further Details: !> !> The matrix V stores the elementary reflectors H(i) in the i-th row !> above the diagonal. For example, if M=5 and N=3, the matrix V is !> !> V = ( 1 v1 v1 v1 v1 ) !> ( 1 v2 v2 v2 ) !> ( 1 v3 v3 ) !> !> !> where the vi's represent the vectors which define H(i), which are returned !> in the matrix A. The 1's along the diagonal of V are not stored in A. !> Let K=MIN(M,N). The number of blocks is B = ceiling(K/MB), where each !> block is of order MB except for the last block, which is of order !> IB = K - (B-1)*MB. For each of the B blocks, a upper triangular block !> reflector factor is computed: T1, T2, ..., TB. The MB-by-MB (and IB-by-IB !> for the last block) T's are stored in the MB-by-K matrix T as !> !> T = (T1 T2 ... TB). !> Definition at line 123 of file cgelqt.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 SRC/cgelqt.f(3)