.TH "TESTING/EIG/cbdt01.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME TESTING/EIG/cbdt01.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBcbdt01\fP (m, n, kd, a, lda, q, ldq, d, e, pt, ldpt, work, rwork, resid)" .br .RI "\fBCBDT01\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine cbdt01 (integer m, integer n, integer kd, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldq, * ) q, integer ldq, real, dimension( * ) d, real, dimension( * ) e, complex, dimension( ldpt, * ) pt, integer ldpt, complex, dimension( * ) work, real, dimension( * ) rwork, real resid)" .PP \fBCBDT01\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> CBDT01 reconstructs a general matrix A from its bidiagonal form !> A = Q * B * P**H !> where Q (m by min(m,n)) and P**H (min(m,n) by n) are unitary !> matrices and B is bidiagonal\&. !> !> The test ratio to test the reduction is !> RESID = norm(A - Q * B * P**H) / ( n * norm(A) * EPS ) !> where EPS is the machine precision\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf !> M is INTEGER !> The number of rows of the matrices A and Q\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns of the matrices A and P**H\&. !> .fi .PP .br \fIKD\fP .PP .nf !> KD is INTEGER !> If KD = 0, B is diagonal and the array E is not referenced\&. !> If KD = 1, the reduction was performed by xGEBRD; B is upper !> bidiagonal if M >= N, and lower bidiagonal if M < N\&. !> If KD = -1, the reduction was performed by xGBBRD; B is !> always upper bidiagonal\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX array, dimension (LDA,N) !> The m by n matrix A\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,M)\&. !> .fi .PP .br \fIQ\fP .PP .nf !> Q is COMPLEX array, dimension (LDQ,N) !> The m by min(m,n) unitary matrix Q in the reduction !> A = Q * B * P**H\&. !> .fi .PP .br \fILDQ\fP .PP .nf !> LDQ is INTEGER !> The leading dimension of the array Q\&. LDQ >= max(1,M)\&. !> .fi .PP .br \fID\fP .PP .nf !> D is REAL array, dimension (min(M,N)) !> The diagonal elements of the bidiagonal matrix B\&. !> .fi .PP .br \fIE\fP .PP .nf !> E is REAL array, dimension (min(M,N)-1) !> The superdiagonal elements of the bidiagonal matrix B if !> m >= n, or the subdiagonal elements of B if m < n\&. !> .fi .PP .br \fIPT\fP .PP .nf !> PT is COMPLEX array, dimension (LDPT,N) !> The min(m,n) by n unitary matrix P**H in the reduction !> A = Q * B * P**H\&. !> .fi .PP .br \fILDPT\fP .PP .nf !> LDPT is INTEGER !> The leading dimension of the array PT\&. !> LDPT >= max(1,min(M,N))\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX array, dimension (M+N) !> .fi .PP .br \fIRWORK\fP .PP .nf !> RWORK is REAL array, dimension (M) !> .fi .PP .br \fIRESID\fP .PP .nf !> RESID is REAL !> The test ratio: !> norm(A - Q * B * P**H) / ( n * norm(A) * EPS ) !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB145\fP of file \fBcbdt01\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.