.\" Man page generated from reStructuredText. . .TH "MPI_NEIGHBOR_ALLTOALLV" "3" "Feb 06, 2024" "" "Open MPI" . .nr rst2man-indent-level 0 . .de1 rstReportMargin \\$1 \\n[an-margin] level \\n[rst2man-indent-level] level margin: \\n[rst2man-indent\\n[rst2man-indent-level]] - \\n[rst2man-indent0] \\n[rst2man-indent1] \\n[rst2man-indent2] .. .de1 INDENT .\" .rstReportMargin pre: . RS \\$1 . nr rst2man-indent\\n[rst2man-indent-level] \\n[an-margin] . nr rst2man-indent-level +1 .\" .rstReportMargin post: .. .de UNINDENT . RE .\" indent \\n[an-margin] .\" old: \\n[rst2man-indent\\n[rst2man-indent-level]] .nr rst2man-indent-level -1 .\" new: \\n[rst2man-indent\\n[rst2man-indent-level]] .in \\n[rst2man-indent\\n[rst2man-indent-level]]u .. .sp \fI\%MPI_Neighbor_alltoallv\fP, \fI\%MPI_Ineighbor_alltoallv\fP, \fI\%MPI_Neighbor_alltoallv_init\fP — All processes send different amounts of data to, and receive different amounts of data from, all neighbors .SH SYNTAX .SS C Syntax .INDENT 0.0 .INDENT 3.5 .sp .nf .ft C #include int MPI_Neighbor_alltoallv(const void *sendbuf, const int sendcounts[], const int sdispls[], MPI_Datatype sendtype, void *recvbuf, const int recvcounts[], const int rdispls[], MPI_Datatype recvtype, MPI_Comm comm) int MPI_Ineighbor_alltoallv(const void *sendbuf, const int sendcounts[], const int sdispls[], MPI_Datatype sendtype, void *recvbuf, const int recvcounts[], const int rdispls[], MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request) int MPI_Neighbor_alltoallv_init(const void *sendbuf, const int sendcounts[], const int sdispls[], MPI_Datatype sendtype, void *recvbuf, const int recvcounts[], const int rdispls[], MPI_Datatype recvtype, MPI_Comm comm, MPI_Info info, MPI_Request *request) .ft P .fi .UNINDENT .UNINDENT .SS Fortran Syntax .INDENT 0.0 .INDENT 3.5 .sp .nf .ft C USE MPI ! or the older form: INCLUDE \(aqmpif.h\(aq MPI_NEIGHBOR_ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS, RDISPLS, RECVTYPE, COMM, IERROR) SENDBUF(*), RECVBUF(*) INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE INTEGER RECVCOUNTS(*), RDISPLS(*), RECVTYPE INTEGER COMM, IERROR MPI_INEIGHBOR_ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS, RDISPLS, RECVTYPE, COMM, REQUEST, IERROR) SENDBUF(*), RECVBUF(*) INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE INTEGER RECVCOUNTS(*), RDISPLS(*), RECVTYPE INTEGER COMM, REQUEST, IERROR MPI_NEIGHBOR_ALLTOALLV_INIT(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS, RDISPLS, RECVTYPE, COMM, INFO, REQUEST, IERROR) SENDBUF(*), RECVBUF(*) INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE INTEGER RECVCOUNTS(*), RDISPLS(*), RECVTYPE INTEGER COMM, INFO, REQUEST, IERROR .ft P .fi .UNINDENT .UNINDENT .SS Fortran 2008 Syntax .INDENT 0.0 .INDENT 3.5 .sp .nf .ft C USE mpi_f08 MPI_Neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts, rdispls, recvtype, comm, ierror) TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf TYPE(*), DIMENSION(..) :: recvbuf INTEGER, INTENT(IN) :: sendcounts(*), sdispls(*), recvcounts(*), rdispls(*) TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype TYPE(MPI_Comm), INTENT(IN) :: comm INTEGER, OPTIONAL, INTENT(OUT) :: ierror MPI_Ineighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts, rdispls, recvtype, comm, request, ierror) TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*), recvcounts(*), rdispls(*) TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype TYPE(MPI_Comm), INTENT(IN) :: comm TYPE(MPI_Request), INTENT(OUT) :: request INTEGER, OPTIONAL, INTENT(OUT) :: ierror MPI_Neighbor_alltoallv_init(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts, rdispls, recvtype, comm, info, request, ierror) TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*), recvcounts(*), rdispls(*) TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype TYPE(MPI_Comm), INTENT(IN) :: comm TYPE(MPI_Info), INTENT(IN) :: info TYPE(MPI_Request), INTENT(OUT) :: request INTEGER, OPTIONAL, INTENT(OUT) :: ierror .ft P .fi .UNINDENT .UNINDENT .SH INPUT PARAMETERS .INDENT 0.0 .IP \(bu 2 \fBsendbuf\fP: Starting address of send buffer. .IP \(bu 2 \fBsendcounts\fP: Integer array, where entry i specifies the number of elements to send to neighbor i. .IP \(bu 2 \fBsdispls\fP: Integer array, where entry i specifies the displacement (offset from \fIsendbuf\fP, in units of \fIsendtype\fP) from which to send data to neighbor i. .IP \(bu 2 \fBsendtype\fP: Datatype of send buffer elements. .IP \(bu 2 \fBrecvcounts\fP: Integer array, where entry j specifies the number of elements to receive from neighbor j. .IP \(bu 2 \fBrdispls\fP: Integer array, where entry j specifies the displacement (offset from \fIrecvbuf\fP, in units of \fIrecvtype\fP) to which data from neighbor j should be written. .IP \(bu 2 \fBrecvtype\fP: Datatype of receive buffer elements. .IP \(bu 2 \fBcomm\fP: Communicator over which data is to be exchanged. .IP \(bu 2 \fBinfo\fP: Info (handle, persistent only). .UNINDENT .SH OUTPUT PARAMETERS .INDENT 0.0 .IP \(bu 2 \fBrecvbuf\fP: Address of receive buffer. .IP \(bu 2 \fBrequest\fP: Request (handle, non\-blocking only). .IP \(bu 2 \fBierror\fP: Fortran only: Error status. .UNINDENT .SH DESCRIPTION .sp \fI\%MPI_Neighbor_alltoallv\fP is a generalized collective operation in which all processes send data to and receive data from all neighbors. It adds flexibility to \fI\%MPI_Neighbor_alltoall\fP by allowing the user to specify data to send and receive vector\-style (via a displacement and element count). The operation of this routine can be thought of as follows, where each process performs 2n (n being the number of neighbors in to topology of communicator \fIcomm\fP) independent point\-to\-point communications. The neighbors and buffer layout are determined by the topology of \fIcomm\fP\&. .INDENT 0.0 .INDENT 3.5 .sp .nf .ft C MPI_Cart_get(comm, maxdims, dims, periods, coords); for (dim = 0, i = 0 ; dim < dims ; ++dim) { MPI_Cart_shift(comm, dim, 1, &r0, &r1); MPI_Isend(sendbuf + sdispls[i] * extent(sendtype), sendcount, sendtype, r0, ..., comm, ...); MPI_Irecv(recvbuf + rdispls[i] * extent(recvtype), recvcount, recvtype, r0, ..., comm, ...); ++i; MPI_Isend(sendbuf + sdispls[i] * extent(sendtype), sendcount, sendtype, r1, ..., comm, &req[i]); MPI_Irecv(recvbuf + rdispls[i] * extent(recvtype), recvcount, recvtype, r1, ..., comm, ...); ++i; } .ft P .fi .UNINDENT .UNINDENT .sp Process j sends the k\-th block of its local \fIsendbuf\fP to neighbor k, which places the data in the j\-th block of its local \fIrecvbuf\fP\&. .sp When a pair of processes exchanges data, each may pass different element count and datatype arguments so long as the sender specifies the same amount of data to send (in bytes) as the receiver expects to receive. .sp Note that process i may send a different amount of data to process j than it receives from process j. Also, a process may send entirely different amounts of data to different processes in the communicator. .SH NEIGHBOR ORDERING .sp For a distributed graph topology, created with \fI\%MPI_Dist_graph_create\fP, the sequence of neighbors in the send and receive buffers at each process is defined as the sequence returned by \fI\%MPI_Dist_graph_neighbors\fP for destinations and sources, respectively. For a general graph topology, created with \fI\%MPI_Graph_create\fP, the order of neighbors in the send and receive buffers is defined as the sequence of neighbors as returned by \fI\%MPI_Graph_neighbors\fP\&. Note that general graph topologies should generally be replaced by the distributed graph topologies. .sp For a Cartesian topology, created with \fI\%MPI_Cart_create\fP, the sequence of neighbors in the send and receive buffers at each process is defined by order of the dimensions, first the neighbor in the negative direction and then in the positive direction with displacement 1. The numbers of sources and destinations in the communication routines are 2*ndims with ndims defined in \fI\%MPI_Cart_create\fP\&. If a neighbor does not exist, i.e., at the border of a Cartesian topology in the case of a non\-periodic virtual grid dimension (i.e., periods[…]==false), then this neighbor is defined to be \fBMPI_PROC_NULL\fP\&. .sp If a neighbor in any of the functions is \fBMPI_PROC_NULL\fP, then the neighborhood collective communication behaves like a point\-to\-point communication with \fBMPI_PROC_NULL\fP in this direction. That is, the buffer is still part of the sequence of neighbors but it is neither communicated nor updated. .SH NOTES .sp The MPI_IN_PLACE option for \fIsendbuf\fP is not meaningful for this operation. .sp The specification of counts and displacements should not cause any location to be written more than once. .sp All arguments on all processes are significant. The \fIcomm\fP argument, in particular, must describe the same communicator on all processes. .sp The offsets of \fIsdispls\fP and \fIrdispls\fP are measured in units of \fIsendtype\fP and \fIrecvtype\fP, respectively. Compare this to \fI\%MPI_Neighbor_alltoallw\fP, where these offsets are measured in bytes. .SH ERRORS .sp Almost all MPI routines return an error value; C routines as the return result of the function and Fortran routines in the last argument. .sp Before the error value is returned, the current MPI error handler associated with the communication object (e.g., communicator, window, file) is called. If no communication object is associated with the MPI call, then the call is considered attached to MPI_COMM_SELF and will call the associated MPI error handler. When MPI_COMM_SELF is not initialized (i.e., before \fI\%MPI_Init\fP/\fI\%MPI_Init_thread\fP, after \fI\%MPI_Finalize\fP, or when using the Sessions Model exclusively) the error raises the initial error handler. The initial error handler can be changed by calling \fI\%MPI_Comm_set_errhandler\fP on MPI_COMM_SELF when using the World model, or the mpi_initial_errhandler CLI argument to mpiexec or info key to \fI\%MPI_Comm_spawn\fP/\fI\%MPI_Comm_spawn_multiple\fP\&. If no other appropriate error handler has been set, then the MPI_ERRORS_RETURN error handler is called for MPI I/O functions and the MPI_ERRORS_ABORT error handler is called for all other MPI functions. .sp Open MPI includes three predefined error handlers that can be used: .INDENT 0.0 .IP \(bu 2 \fBMPI_ERRORS_ARE_FATAL\fP Causes the program to abort all connected MPI processes. .IP \(bu 2 \fBMPI_ERRORS_ABORT\fP An error handler that can be invoked on a communicator, window, file, or session. When called on a communicator, it acts as if \fI\%MPI_Abort\fP was called on that communicator. If called on a window or file, acts as if \fI\%MPI_Abort\fP was called on a communicator containing the group of processes in the corresponding window or file. If called on a session, aborts only the local process. .IP \(bu 2 \fBMPI_ERRORS_RETURN\fP Returns an error code to the application. .UNINDENT .sp MPI applications can also implement their own error handlers by calling: .INDENT 0.0 .IP \(bu 2 \fI\%MPI_Comm_create_errhandler\fP then \fI\%MPI_Comm_set_errhandler\fP .IP \(bu 2 \fI\%MPI_File_create_errhandler\fP then \fI\%MPI_File_set_errhandler\fP .IP \(bu 2 \fI\%MPI_Session_create_errhandler\fP then \fI\%MPI_Session_set_errhandler\fP or at \fI\%MPI_Session_init\fP .IP \(bu 2 \fI\%MPI_Win_create_errhandler\fP then \fI\%MPI_Win_set_errhandler\fP .UNINDENT .sp Note that MPI does not guarantee that an MPI program can continue past an error. .sp See the \fI\%MPI man page\fP for a full list of \fI\%MPI error codes\fP\&. .sp See the Error Handling section of the MPI\-3.1 standard for more information. .sp \fBSEE ALSO:\fP .INDENT 0.0 .INDENT 3.5 .INDENT 0.0 .IP \(bu 2 \fI\%MPI_Neighbor_alltoall\fP .IP \(bu 2 \fI\%MPI_Neighbor_alltoallw\fP .IP \(bu 2 \fI\%MPI_Cart_create\fP .IP \(bu 2 \fI\%MPI_Graph_create\fP .IP \(bu 2 \fI\%MPI_Dist_graph_create\fP .UNINDENT .UNINDENT .UNINDENT .SH COPYRIGHT 2003-2024, The Open MPI Community .\" Generated by docutils manpage writer. .